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Neural representation of a-oriented moving light bars in the cortex: A neural network study
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A neural computational model is suggested in this paper for investigating the stimulus dependence of
spiking patterns and the neural representatiom-ofiented moving light bars in the cortex. In this model, a
stimulus-directed cortical developing algorithm is introduced for training the neural network. Three classes of
computer simulations concerned with the orientation of the stimulus are carried out. The simulation results
show that the fine temporal structure of spiking patterns of single units depends @otieatation of the two
moving light bars, and the fine temporal structure of their combinatorial spiking patterns are also context
dependent. They also show that the neural representation @fosiented moving light bar is determined not
only by the stimulus itself but also the architecture of the matured network. In the end, we propose a
possible neural coding mechanism underlying the temporal cell subassemblies in the cortex, which could be
spontaneously and dynamically organized into a dynamical cell assembly by synchronized activity of these
subassemblies.
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INTRODUCTION How to represent an essential feature of a perceptual ob-

ject, and how to bind these features as an integrated whole in

How information can be integrated and how coherent repihe cerebral cortex, still remain unresolved. In this paper we
resentational states can be established in the cerebral cortaifempt to explore the representation mechanism of the two-
still attract much attention. For decades, most neurophysioldN0Ving-bar features, and to understand how the orientation
gists have assumed that a neuron’s information is containe(a]c the stimulus and other features are bound into more com-

solely in its mean firing rate. An alternative view, that tem- plex features.

poral firing patterns contain information, is gaining attention MODEL

as a result of recent theoretical and experimental approaches. ) o . )
Moreover, information coding in the cerebral cortex by in- ~Our model is shown in Fig. 1. In Fig(d), the upper is an
dependent or coordinated populations is also the subject ¢RPUt pattern, a state with two moving bars; the middie is the
vigorous debatésee Ref[1] for a review. The brain, how- mputllayer of the netvvprk, and the bottom the cortical array.
ever, most likely represents a world using neural assembliedn€ input layer consists of two 3010 square arrays of
and population codes could be subtler. Over the years, &Put-layered units; the cortical array is a>880 square ar-
number of different definitions of “neural assembly” have ray of cortical units. For the convenience of description, we
been proposed. Some of them were defined in terms dfumber all 900 units by their locatiorisow, column, 30
anatomy, and others in terms of shared function or sharecf Fow-+column. Figure ) plots the response of input-
stimulus evoking responsdsee Ref[2] for review). Re-  layered units expressed by sombrero function. _
cently, a concept of dynamic cell assembly in the cortex was A moving light bar is usually used as a visual stimulus in
suggested by Fujiet al. [3]. However, whenever the popu- neurophysmloglcal' experlments for'monkeys or qats awake
lation codes or assembly codes, a common problem thaf under anesthesia. In our simulations, two moving bars is
needs to be addressed is the binding problem. It was prqiccepted as the stimulus. They are of the sameientation,
posed that the synchronization of neuronal responses on&d move appositely at the same constant velaegtyFig.

time scale of milliseconds might be a more efficient neuraf(c)]. In all computer simulations, only the orientatiarfor
mechanism for binding the population respofide It was  all parameters of the stimulus is considered. For the sake of
suggested cortical oscillations in the-frequency band discrete computatlpn, it is digitized as a sequence of moving
(20—70 Hz might be involved in an object representation states of two moving bars. Each state is represented by 10
[5], using the temporal structure to perform feature binding,X 10 array of blockgalso see Fig. (8)]. White blocks indi-

but the hypothesis is still controversiGdee Ref[6] for a  cate the background, and all black blocks represent the two
review). There is some evidence that the coherence oPars[see Fig. 1c)]. In our simulations, each input pattern is

y-band EEG activity could be as a basis for associative learr@Pplied to two square arrays of input layer at the same time
ing [7]. (in Fig. 1). Each input-layered unit transforms the sum of

inputs it receives, weighted by the sombrero function, into
spikes and conveys them to the cortical array. The math-
*Author to whom correspondence and requests for materialematics details for the transformation algorithm is given in
should be addressed. Tel. 086-021-64853625; 086-010-6488853Bjppendix A.
Fax 086-010-64877837; email address: akguo@ion.ac.cn Our model is a modified copy of Shragetral’s version.
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@ aEa and considerations. According to Softki2], a cortical neu-

Input Pattern ron functions as a coincidence detector at least in an effective

= sense. A coincidence detector neuron operates as a detector
for the temporal coincidence of enough synaptic inputs to

Input Layer trigger the firing of the neurofi2,13. Hopfield described an
encoding and computation model using action potential tim-
ing to carry and encode information, and using a time-delay
network to compute this representation. He suggested that

Cortical Layer the dynamic range and accuracy of the pattern recognition
depend on the time resolution availabl&4]. Recently,
studying distributed synaptic modification in neural networks
induced by local stimulation with temporal patterns, Bi and
Poo found that repetitive local stimulation can result in syn-
aptic modifications at sites remote from the stimulated neu-

© A ron [15]. Other documents indicated that time delay may be

v, A one of the origins of synchronized activity in the systesme

Ref.[6] for a review. Time delay(or latency is a potential

[ code for feature binding in the striate corfeb6]. According

to neurophysical experiments, Watanabe and Aihare gave a

b

Response

/

/yfl \ mathematical expression that reflects the relationship be-
’/Illli A Q\"- — tween the strength of the superthreshold stimulation and the
fifl{"f"‘:‘:“:&‘}'\‘\s& latency of action potential§l7]. These studies illustrated

ORI

i, A
SIS

that time delay plays an important role in the neural coding,
the neural representation, and the modification of synapses.
At the beginning of any simulation, as well as in the input
FIG. 1. Organization of the neural network model and the inputlayer, each unit in the cortical layer is randomly assigned to
pattern.(a) Diagram of the two-layered network, consisting of two be excitatory or inhibitory. The probability of the excitatory
square arrays of input-layered units and a square array of corticaortical unitP.., and the probability of the excitatory input-
units.(b) The response of the input-layered unit to the input patternlayered unitP 4qerenc@re initially given. Whether the synaptic
(c) The stimulus:a-oriented moving barsthe arrow indicates the  connections of a projective unit are excitatory or inhibitory,
moving direction of the bar it is in accord with type of the unit. The inhibitory connec-
tivity is local, while the excitatory connectivity is global. The
Shrageret al. used a cortical array model based on the KDCPprojecting probability for an inhibitory presynaptic cortical
model to investigate the emergence of a functional organizadnit j to post-synaptic unit decays in an exponential way
tion. According to the KDC modél8], the dendritic selec- with distancer =r(i,j), Py i(i,j) =A; exp(-r42ma;); for
tion and elimination depend upon the activity-dependent difthe excitatory presynaptic cortical ufjtthe projecting prob-
fusion of a neurotrophic substandalso see Ref[9]). ability is Py o(i,]) =Ae. The synaptic connections from the
Shragetet al.[10] extended the KDC model by introducing a input-layered unit to the cortical array are determined by the
“wave” of plasticity, which can lead to a differential distri- projecting probabilityPy,ic, but there is no synaptic con-
bution of the function over the cortical surface, and revealediection feedback to the input-layered units. To focus on the
that this manipulation could induce the development ofdynamics of the cortical array, the weigh, of the connec-
higher order functionality in subsequently developing areagion from input-layered unik to the cortical neurorl is
of the simulated cortex. assigned tow (w=0.8 for all W,,). There is no synaptic
In comparison with the version of Ref10], the most connection from an input-layered unit to another input-
important modifications we made include the followirid)  layered unit or to itself, nor a synaptic connection from one
Cortical units in the network are modeled by coincidencecortical unit to itself in this model. Transmission spike delay
detector neurons(2) The time delay to transmit a spike along a synaptic connection is determined by the equation
along a connection is considered, as well as the time delay tdgelay= Bk+ Cx R(), (k=cc,ic), whereR(-) is a random
fire a spike by a neuron when its membrane potential is ovefunction ranging from 0.0 to 1.B, andC,, are constants.
its threshold.(3) The input layer consists of two square ar- cc indicates the synaptic connection of one cortical unit
rays of input-layered units, instead of input of two one-bit ofto another cortical unit, anit from that of an input-layered
afferent units[10]. (4) The cortical development algorithm unit to a cortical unit. Once the distribution of intercortical
(see Ref[10]) is extended in accordance with the modifica- connections is assigned, the initial threshélg of cortical
tions of neuron model, time delay, and the firing property ofunit v and the initial weighW,,, of the intercortical connec-
input-layered units(5) The associative learning rule is used tion (cortical unit u to unit v) are thus determinedsee
in the training stage of the network, whereas in the subseAppendix A).
guent testing stage for the matured network, the spike-based With the initialized network, the training operation of the
Hebbian learning rul¢ll] is employed. network and the testing are carried out in turn. For the train-
All above modifications are based on the previous studietng operation, a brief summary of the mathematical details

4

=

041916-2



NEURAL REPRESENTATION OFRr-ORIENTED . . . PHYSICAL REVIEW E64 041916

TABLE |. The values of most important simulation parameters of the moggls the concentration of
trophic factor(initially x;;=0 for all connections and the other parameters in the developing process are the
same as in Ref.10].

Variable Parameter Value
P el the ratio of cortical excitatory units to the 0.5-0.8
inhibitory synapse connection
P afterent the ratio of input-layered excitatory units to the 0.3-0.8
inhibitory synapse connections
A o the coefficients for initially assigning the cortical 0.6,5
inhibitory synapse connections
Ae the coefficients for initially assigning the cortical 0.1-0.45
excitatory synapse connections
Plink ic the probability for initially assigning the synapse 0.25
connections from input-layered units to a cortical
array
Bec, Cec intercortical transmission delay constant 1 cyetes), 20 cycles(ms)
Bic. Cic input-layered units to the cortical units transmission 8 cycles(ms), 4 cycles(ms)
delay constant
To Ty threshold constant of cortical units 7.0, 0.25
T threshold of cortical unit Ti=To+T ZW;
ap, by cortical synapse weight constant 1,04
W;; synaptic strength Wi =ag+bg xij
Tsieep absolute refractory period 5-7 cycléss)
7 learning parameter 1e6-5
™ time constant 5 cycleéns)
T4 time constant 1 cycléms)
T_ time constant 20 cycle@ny
Al dimensionless constant 1.0
A_ dimensionless constant -1.0

for the development algorithm is given in Appendix A, and arule used in the training process, a spike-based Hebbian
subset of the most important model’'s parameters are showlearning rule depending critically on an asymmetric “learn-
in Table |. These parameters were assigned to single uniting window” [11] was adopted. The change of the synaptic
synapses, or channels. More details of the cortical developweightAW;; depends only on firing timetg (the arrival time
ment algorithm can be found in Refl0] and [8]. As a  of the fth input spike at neurom andt" (the nth output

result of the training operation, one striking aspect of thespike of the neuronin the time intervalt, t+AT],
development of the cortical array in the network is stimulus-

directed pruning of the initial overproduction of synaptic

connections, resulting in a relatively sparsely interconnected

final functional architecture. In addition, the parameters for E W'"+E "weuL 2 W(t

the matured network, such as thresh@id of neuronv, the t "

weight W, , of connection(from u to v), the transmission

delay TQ,, of the connectionsynaptic pathwaly and the Where the learning parameterd’ andw™ are related toy,
spatial distribution of the remaining intercortical connec-w"= 7 andw"=—1.0475. The learning window/\/(s) in
tions, are closely correlated to the given training stimulus. Inunlts of the learning parameteris a function of the delay
subsequent testing process, instead of Hebb’s associati@¥t; ftn,

S
ex TSyn A+ 1 -

7 S
A,exp ——

T+

S
= +A_(1—~—” for S<0

T+

W(s)=

S
+A_ exr{ — 7-_) for S>0,
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where ™" 7., 7_, T =" /(Y™ 7.) and 7_  single cell responses to specific calls are reproduced from

=" _ |(#"+ 7_) are time constants. In the testing opera-trial to trial with millisecond precisio18,19.

tion the modification of the transmission spike delays the In the second class of simulations, one network is first
synaptic connections and the changes of thresholds for coftained on the condition of two moving bars that #eri-
tical units, as well as a pruning of the synaptic connectionseénted. Then a variety ofa;,a;,...,y-orientated two-

were considered less than in training process. moving-bar testing stimuli are separately applied to the ma-
tured network for testing. The simulation examples reported

here are carried out with the chief stimulus paramejgrs
SIMULATION RESULTS =30° for training, anda1=30°, ar,=45°, a3=0°, and
a,=90° for testing. For the convenience of description,
As described above, all simulations we made include twahese testing simulations are separately defined as Example
steps: a training network and a subsequent testing operatioa. (a;=30°), Example B @,=45°), Example C s
The stimulus used in a specific stage is thus called the train=0°) and Example D ¢,=90°). With the given four simu-
ing stimulus or testing stimulus. For the convenience of dedation experiments, 80 out of 900 cortical units,
scription, we letB denote the orientation of the training 324th—403th, marked as 0—79, are selected for analyzing the
stimulus for the training stage, andthe orientation of the responses of cortical units. In Figga8 3(b), 3(c), and 3d),
testing stimulus for the testing stage. In order to investigatenost of the spike trains indicate that although the given
the neural representation eforientated two moving bars, stimulus is different, most of single units fire in specific spik-
three classes of simulations are designed in this study. Wiag patterns, and the time interval between alternate repeti-
now describe them in detail. tion pattern in every spike train is associated with the inter-
In the first class of simulations, the same stimulus servesal of the repetitive input. Even so, for these units, the
to train the network and then to test it. An example describedpiking patterns of the same unit in different experiments are
here is the case of the chief stimulus parameteys 1 not the same. In the simulation experiment, Example A, as
(blocks per training phagea= B=30°. Typical results of illustrated above, when the testing stimulus is the same as the
the training operation include the fact that the synaptic contraining stimulus ¢= ), all activated units precisely re-
nection density become relatively sparse. Synaptic connegeatedly respond to the given input in the manner of specific
tions within the cortical array are reduced by 71.8%. Beforespiking patterns. However, when the testing stimulus is dif-
the training operation, a cortical unit receives an average oferent from the training stimulusa(# 8) with regard to the
47.6 connections from other cortical units, but there are onl¥firing pattern and its temporal structure, some changes ap-
13.4 connections remaining on average after the training prggears. For instance, in Example B, the testing stimulus pa-
cessing. In addition, the transmission spike delay and weightameter isg=30°, and the training stimulus parameter
for every intercortical connection are modified, and the=45°. As displayed in Fig. 4, for every spike train, during
threshold for every cortical unit is adjusted. Figure 2 plotsthe first few repetition inputs, the spiking patterns of some
the 12 spike trains of 12 cortical units firings with 12 repeti- single units change from one temporal structure to another
tive inputs of the same stimulus in the testing stage. Beforée.g., units 141 and 234 in Fig).4Some units begin to stop
analyzing the temporal structure of spiking timings of singlefiring (i.e., unit 402 or begin to fire(i.e., unit 660. Their
units, we simply define the spiking pattern of a single unit agfirings transit from a temporal structufer spike patternto
repetition pattern in its spike train. In Fig. 2, it can clearly beanother structure. This result reveals that if the orientation of
seen that in every spike train, all but the first several spikeshe testing stimulus is different from that of the training
in each activated unit precisely respond to the given input irstimulus stored in the network, the nonlinear dynamic evo-
a specific spiking pattern. The time interval between alter{ution of the system will appear. It will finish in a short time
nate repetition patterns in the spike train depends on thend run in a stable state. The nonlinear dynamic evolution
interval of the input stimulusT;,,. It is very interesting that process of the system further illustrates the dynamic behav-
in the auditory cortex of mammals, the spiking patterns ofior robustness of the network
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model. When firing single units from one spiking pattern tofor Example A (@,=30°), 77 for Example B ¢3=45°), 23
another spiking pattern, the temporal structure of their comfor Example C @;=0°), and 28 forExample D @,
binatorial spiking patterns change to a new temporal struc=90°), respectively. It seems that in a neural representation
ture. Thus, in the sense of neural representation of aof a-oriented two moving bars, if only comparing the counts
a-orientated two moving bar, information may be encoded infor the classes of spiking patterns to represent the stimulus,
combinatorial spiking patterns more than in the firing pat-two moving bars that are oriented 30° or 45°, is more than
terns of single units. the cases of 0°- or 90°-orientated two moving bars. On the
For a given simulation experiment, in the light of the fine other hand, we note that although the orientations of the
temporal structure of the spiking patterns, all cortical unitstesting stimuli are different, the same spiking patterns always
firings could be categorized. For two unitsand v, if the  exist among the four different simulation experiments. The
temporal structures of their spiking patterns are the sameyshenomena also appear in the case of nonlinear dynamic
their firings could be categorized as the saar@ass. Other-  evolution of single units discharges. When the system is run-
wise, their firings are categorized in two different classesning in a stable state, the spiking patterns of single units
Statistical data show that for the four simulation experi-firings (not generated by the same ynitin be also found in
ments, the counts for the classes of spiking patterns are e neural representations of the other stimuli. The result

TABLE II. The maximum crosscorrelation coefficiept,,, between two frequencies of firing frames of
the cortical array on the same testing stimulus, a 30°-oriented bars, for the two different networks trained
separately by two moving bars oriented By and 8, (Ave. indicates average and Vari. variahce

B1.B8> 0°,30° 0°,60° 0°,120° 30°,60° 30°,120° 60°,120° Ave. Vari.

Prmax 0.03 0.08 0.08 0.07 0.02 0.07 0.06 2803
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illuminates that the responses of cortical units are selectivelgynchronization of the oscillating activity of the cortical ar-
involved in representation of stimulus in manner of spikingray occurs in frequencies 32 and 44-3 Hz. The first
patterns. Thus, the exacting timing of individual spikes ispeak in the power spectrum is in thefrequency band, and
correlated to a specific stimulus, and the combination othe other is in they-frequency band. Some papers suggested
spiking patterns of individual units is context-dependent. that the coherence of the fast rhythms emerges within a short
Carefully analyzing the firings of the individual units, we range, whereas low-frequency sleep rhythms exhibit syn-
find that the activity of the activated units within the cortical chronization on a larger spatial scd24—-2§. If it is true
array includes both irrhythmical spiking and rhythmical spik- that the cortical array developing process can cause a differ-
ing. An oscillatory analysis of the units firings by identifica- ential distribution of functions over the cortical array sug-
tion of power spectrum peaks indicates that with a givergested in Ref[10], the low-frequency peak (142 Hz) may
stimulus, a two moving bar oriented by 30°, oscillatory fir- reveal a synchronization of cells among two or more sepa-
ings of single units exist in the frequency range 13-72 Hzrated function structures. Therefore, for the experin{&nt
The same data can be obtained in the other simulation example A, there is more than one synchronous episode of
perimentg Examples B, C, and D The data of the frequency groups of units in neural representation of two moving bars
range for these single units seem to not be correlated to theriented 30°. Similar calculations for the other three experi-
orientation of the stimulus. These data are in agreement witments were carried out, and the same conclusion achieved.

the previous experimental dafa0-23. We also note that For the third class of simulations, a variety gforiented
some units are still suppressed, i.e., units 504 and (562 bars,3,=0°, B,=30°, B3=45°, B,=90°, are separately
Fig. 2. used for training four different networks. Then the same

In order to describe the collective responses of the corticagtimulus, a 30°-oriented bar, is applied to these mature net-
array and further examine the response properties of units iworks for the testing operation. In order to evaluate collec-
this representation, we turn to an analysis of the responses ti¥e response properties of the cortical array, we introduce a
the whole cortical array. During a simulation operation, thecross-correlation analysis for the responses of the cortical
instantaneous firing states of all units within a cortical arrayarray (see Appendix B Table Il lists the maximum cross-
at a timet; form a binary image if the active state of a unit is correlation coefficients between the two sequences of firing
denoted by the pixel value 1, and an inactive state by 0. Herfames of the cortical array in the condition of the same
every binary image could be called a firing frame for describ-testing stimulus ¢=30°) for two different networks trained
ing the instantaneous firing states of the cortical array. Beseparately by two different training stimulig;- and
cause one firing frame is formed at each running step, #,-oriented bars. In comparison with this result, Table IlI
sequence of firing frames is yielded during the testing prodists the maximum cross-correlation coefficients between the
cess. According to our definition of autocorrelation for thetwo sequences of firing frames of the cortical array under
activity of the cortical arraysee Appendix B we examine conditions of two different testing stimuli,o;- and
the power spectrum of combinatorial spiking patterns of thew,-oriented bars, for the same network trained by a 30°-
cortical array in Example A. The data demonstrate that theriented bar. It can be seen that the coefficients in Table Ill

TABLE lll. The maximum crosscorrelation coefficiept,,, between the two frequencies of the cortical
array on the two different stimuli, two moving bars orienteddyyand «,, for the same network trained by
training stimulus, a 30°-oriented bag & 30°).

ag,a; 0°,30° 0°,45° 0°,90° 30°,30° 30°,45° 30°,90° 45°,90° Ave. Vari.

Pmax 0.16 0.24 0.29 1.00 0.24 0.21 0.19 0.63 1.21
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are much higher than the values in Table II. This result re- DISCUSSION AND CONCLUSION

veals that the responses of the two different networks trained
by different stimuli in neural representations of the same _ N _ _
stimulus are obviously different. This is accordance with the Observing spiking patterns of some cortical units shows
conclusion that the network pathway remode“ng inducing b)lhat there are cortical units responding to stimuli from the
repetitive local stimulation appears to be highly dependengame fine temporal structute.g., units 502 and 542 in Fig.
on a precise temporal pattern of the stimulatjds]. The  2). These units could be thus defined as temporal cell assem-
combination of spiking patterns of all cortical units within Plies. The response properties of the ensemble of units are
the cortical array depends not 0n|y on the stimulus itself buﬁim"ar to that of a functional column in the visual cortex, but
also on the final functional architecture of the mature netthese units could be spatially separated. Furthermore, if the
work. These combinatorial spiking patterns may play a morgohase relationship of spiking timings for every cortical unit
important role in the neural representation of @oriented in a temporal cell assembly is considered, a temporal cell
bar than spiking timings for single cortical units. Abeles andassembly can be split into several temporal cell subassem-
co-workers reported that they detected repetition patterns iblies, in which the activity of all components can form a
spike trains taken from multiple cell recordin7—-30. closely firing chain[e.g., a subassembly in Fig(ap]. In
They suggested that the spatiotemporal firing patterns relateather words a temporal cell subassembly holds a time bin of
to behavior and information may be encoded in spatiotemactivity, termed as the activity bid.e., wl), in which all
poral firing pattern$28,29. components fire in turn. Motivated by the characteristics of a

It is interesting in Table Il that there are pairs with the functional column and a functional microcolumn, we postu-
same values: 0.07 for 30°-60° and 90°-120° and 0.08 fofate that a temporal cell subassembly acts as a detector of
0°-60° and 0°-120°. We find that for every pair of training local features.
stimuli with the same value, the differences in orientations of The results of recent studies of the visual system indicated
the two stimuli for its two items are the same. For examplethat responses to synchronously presented pattern elements
the pairs 30°-60° and 90°-120° have the same coefficientan be bound together and interpreted as a part of the same
0.07, the differences between the two items are both 30°. Thebject, whereas responses to pattern elements presented with
reason for this is that the response function of the inputtemporal offsets more greater than 10 ms are perceived to be
layered units is the sombrero function with a circular re-unrelated31-33. One can interpret synchrony as a signa-
ceived field. ture of relatedness. Abeles and co-workers studied whether

A possible spatiotemporal coding mechanism
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repetition patterns in spike trains taken from multiple cellcerns whether the spiking patterns in the networks are syn-
recordings are associated with an external event. They sughronous or not. The synfire model assumes that firings of
gested that synfire reverberations offer some advantages witleurons in the same node are synchronized, while the latter
regard to the possibility of processes in different brain locaassumes that dynamical cell assemblies could be organized
tions. The selective connections between cell assemblies ali¢ @ network by a coincidence of incident pulses and a tem-
marked by temporal coherence on a millisecond time scal@oral correlation of firings resulting from events of such co-
[4,34,35. Together with the function of synchronization and incidence detectiof8]. Our model is in agreement with that
our simulation results, we attempt to demonstrate a possibl@f Ref.[43]. We emphasize that the organization of dynami-
neural coding mechanism concerned with temporal cell supcal cell assemblies results from a ;ynchromzaﬂon of firings
assemblies. Three temporal cell subassemifligs-g3, in 2MONg temporal cell subassemblies. \_Ne_sug_gest that the
Fig. 5(b)] are taken into account for the sake of simple inter-€Mergence of temporal cell su_ba_ssembhes is s_tlmulus driven,
pretation. Within a large temporal windovs [shown in Fig. and results from events of commde_nce detecthn by the ma-
5(b)], if the overlap occurs among their activity bifisl, b2, ~ {Ure network. In our suggested coding mechanism, the over-
and b3, respectivelythese temporal cell subassemblies., lap activity blrj among temporal qell subassemblles provides
g1 and g2, g1 and gawill fire synchronously within their & temporal window for synchronization of these subassem-

overlap activity bin. Because the emergence of temporal ceff!i€S- Within the overlap activity bin, the neurons belonging
assemblies results from an input event of coincidence deted® these temporal cell subassemblies are temporally linked
tion by the mature network, these cell subassemblies thu@Nd organized spontaneously into a dynamical cell assembly.
establish a temporal correlative relationship underlying theif S€l€ctive feature binding mechanism relies on the relative
characteristic spiking patterns. In these subassemblies, tf/King timing among temporal cell assemblies and precise
cells firing within the overlap activity bin are functionally €mporal windows. Synchronization among temporal cell
linked, temporally and they organized spontaneously into g,ubas_semblles could be used for response selec_tlon and to
dynamical cell assembly. Because of synchronization, th@'9@nize a more complex cell assembly, because it enhances
feature information contained in these temporal cell subasth® saliency of discharges with great temporal selectivity, in

semblies is temporally bound together and conveyed to sutRccordance with the previous conclusipi]. Thus, infor-
sequent processing systems in a precise timing and consiglation may be encoded in the precise temporal relations
tent manner. The activity of the dynamical cell assembly2M0Ng members of a dynamical cell assembly, and be en-
specific spatiotemporal firing patterns, carries more comple£©ded by spatiotemporal firing patterns. .
features. Thus the participation of all components in a tem- N thiS research, three aspects of simulation experiments
poral cell subassembly temporally contributes collectively to2™€ carried out. The results demonstrate that responses of

a particular coding function. This possible coding mecha.cortical units are selectively involved in a neural representa-

nism is in agreement with an electrophysiological experi_tion of stimulus in the manner of spiking patterns. The com-

ment. The detailed structure of the columnar organizatioffination of spiking patterns of all cortical units depends not
was investigated by using optical imaging of the intrinsiconly_on the stimulus itself but also on the final funct|ona|.
signal. The result suggests that there exists a grouping (ﬁrchltecture of the network. It has been suggested that if

columns representing related features, and that they clustgP'Ke timing encodes neural information, a delay line archi-

with partial overlaps to compose a large unit of image pro_tecture combined with a spike timing-based synaptic modifi-

cessing[36]. It was reported more recently that precisely C&lion rules provides a network mechanism, to convert and
reproducing temporal firing patterns in thalamocortical re-Store temporal mformauon into ;patlally distributed patterns
sponses produces information about stimulus featureSf Permanent synaptic modificatiofisS].
[37,38. Clearly, the selective feature’s binding mechanism
depends on temporal aspects—the overlap among active ACKNOWLEDGMENT
bins, and the large temppral window nesting these small bins This research was funded by the NSEC01050103 and
as well. Evidently, selective connections between cell asse 0835020,
blies are marked by temporal coherence on a millisecon
time scal€g[4,39,40. The coding strategy also indicates that
if only a single feature is present or if overlap among the
activity bins never occurs, then the binding problem does not
arise. In fact, some project neuron pairs in insect olfactory This appendix is adapted in part from Ref8] and[10].
system, whose components are both activated by the sama the beginning of the training procedure, each cortical unit
odor, may never even fire spikes together synchronouslyias a firing thresholdl; and a pool of “trophic factor”
[41]. (Fr), i (u;=20.0 for all units,

Abeles and co-workers found that spatiotemporal firing
patterns in the frontal areas of monkeys are associated with
behavior. They suggested that information may be encoded Ti(t):T0+T+WZ>O Wij »
in the spatiotemporal firing patterns as in the “synfire” !
model[28,29,43. Watanabe, Aihara, and Kondo’s simulation where T,=7.0, andT, =0.2. The synaptic weightV;; is
experiments obtained the same conclusion on a spatiotempeelated to the amount d¥; that accumulated in the connec-
ral firing pattern[43]. However, the difference between con- tion, expressed as

APPENDIX A: A CORTICAL DEVELOPMENT
ALGORITHM

(A1)
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Wi () =co+Cy0y; (A2) Here the scaling factok.(t) reflects a dynamic Gaussian

spatial modulation of the diffusion across the cortical array.

wherecy,=1.0 andc;=4.0. gy; is the concentration df in During the first training phase, the following value)af will

the connection from unitto unitj. Each connection between be utilized:

units take on one of three discrete states: labile, stable or

dead. Initially, all connections begin in the labile state, and A.={1.0,0.86,0.77,0.66,0.53. . ,0.0.

gij=0. A synaptic connection is essentially guaranteed t

stabilize when itsoj; reaches 1.0. Similarly, the probability

of a connection enterlng the dead state is proportional to the

%n the next training phase, the “wave” of plasticity moves
to the right a small amount.

time t, whose simulation runs A.={0.86,1.0,0.86,0.77,0.66,0.53 . ,0.G.
Ptaiize= 1{1+exd — 15(o7; — 1)1}, (A3)  The “wave” moves the same small amount for each training
phase, with the end of the development manipulation. The
Pye=1/{1+exd —0.02t—500]. (Ad) firing thresholdT; of a cortical unit, or synaptic weigiwj; ,

and a connection state are updated according to the Egs.

In a simulation, the response function of a cortical unit is(A1)—(A4).

modeled by the response function of a cortical cell by a Meanwhile, at each training phase, two square arrays of
rectangular response function in an effective sgd&. At input layer simultaneously transform a stimulus pattern into
each running cycle, within a quasisynchronous windew bundles of spike trains with the specific spatiotemporal struc-
(w=1.5cycley, each cortical unit sums the activation com- ture. The responses of an input-layered unit is determined by
ing to it along excitatory connections and subtracts from in-2 pixel and its eight neighbors within input pattern.

hibitory connections, both weighted by synaptic efficiencies

W;; . If the summation of the activatiot is over than its y(i,j)=apx(i,j) +ay[x(i-1j-1)+x(i+1j-1)

firing thresholdT;, and if no action potentials has been gen- Fx(i—1,j+ 1) +x(i+1j+1)]

erated more recently the refractory perioteep(Tsicep

=4-7ms), it will emit a spike precisely behind the time +ay[x(i,j—1)+x(1,j+1)+x(i—1,))

delay At. The time delay is described by the functig(t/) . .

— 6I[ o+ (U~T,)], (6=3-6 ms andp=1.0), which models x(i+1)], (A7)

a relationship between the strength of the superthresholgnerea,=1.0,a,=0.77, anda,=0.66. 1fy(i,j)>T; (T;
stimulation and the latency of the action potent{dig]. The  —1 o), the input-layered unit emits a spike precise behind

transmission spike delay of each connectispnapse path- e timeTy=6[1.0— (y(i,j)—T¢)].
way) is modified by the covariance rule of the activity of
presynaptic and post-synaptic neurons, according to the APPENDIX B
equation
With the two sequences of the firing frames of the cortical
ATy=—p(Vg—(Ve))(Va—(Va)),p=1.0x10"". array in neural representations of the stimulus, we define the
autocorrelation coefficienp,(ty) and the crosscorrelation

At each training phasé¢every five cycley the network is coefficientp(to) as
C

trained by updateds;, oj;, and T; connection states. A

guantity ofF is moved from a unit pool ofF t( ;) to a link 1 N D

pool of F1(a;) according to a Hebbian associative rule) =—> > UKy, t+t)—Uxy.D],
For excitatory post-synaptic units,.,,=1 whenever the N =1 =1

pre-synaptic post-synaptic neurons fire simultaneously, and LN D

Sneb=0 otherwise.(2) For inhibitory terminals,Spep,= 1 ty=— XV t+t XVt
whenever the post-synaptic neuron fires but the presynaptic Pelto) N 2 ; Ua(x.y,tH1o) = Up(xy, 0],

(inhibitory) neuron does not fire; otherwisé,,=0. The

concentration of 1 in an incoming connectionr;; changes respectively, where5(-) is the delta function, ant indi-
according to the following equations: cates the duration for computatiod, its dimension, and

U.(x,y,t) andUy(x,y,t) the activity of the neurortx,y) re-

Api=—0.015yepptti » (A5)  sponding toa andb stimuli at timet. Generally,N is set to
the time interval between two repetitive inputs of the
AO—IJ:_)\C(]')AIU’I . (A6) stimulus.
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