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Neural representation of a-oriented moving light bars in the cortex: A neural network study
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A neural computational model is suggested in this paper for investigating the stimulus dependence of
spiking patterns and the neural representation ofa-oriented moving light bars in the cortex. In this model, a
stimulus-directed cortical developing algorithm is introduced for training the neural network. Three classes of
computer simulations concerned with the orientation of the stimulus are carried out. The simulation results
show that the fine temporal structure of spiking patterns of single units depends on thea orientation of the two
moving light bars, and the fine temporal structure of their combinatorial spiking patterns are also context
dependent. They also show that the neural representation of ana-oriented moving light bar is determined not
only by the stimulus itself but also the architecture of the matured network. In the end, we propose a
possible neural coding mechanism underlying the temporal cell subassemblies in the cortex, which could be
spontaneously and dynamically organized into a dynamical cell assembly by synchronized activity of these
subassemblies.
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INTRODUCTION

How information can be integrated and how coherent r
resentational states can be established in the cerebral c
still attract much attention. For decades, most neurophysi
gists have assumed that a neuron’s information is conta
solely in its mean firing rate. An alternative view, that tem
poral firing patterns contain information, is gaining attenti
as a result of recent theoretical and experimental approac
Moreover, information coding in the cerebral cortex by i
dependent or coordinated populations is also the subjec
vigorous debate~see Ref.@1# for a review!. The brain, how-
ever, most likely represents a world using neural assemb
and population codes could be subtler. Over the year
number of different definitions of ‘‘neural assembly’’ hav
been proposed. Some of them were defined in terms
anatomy, and others in terms of shared function or sha
stimulus evoking responses~see Ref.@2# for review!. Re-
cently, a concept of dynamic cell assembly in the cortex w
suggested by Fujiiet al. @3#. However, whenever the popu
lation codes or assembly codes, a common problem
needs to be addressed is the binding problem. It was
posed that the synchronization of neuronal responses
time scale of milliseconds might be a more efficient neu
mechanism for binding the population response@4#. It was
suggested cortical oscillations in theg-frequency band
~20–70 Hz! might be involved in an object representatio
@5#, using the temporal structure to perform feature bindi
but the hypothesis is still controversial~see Ref.@6# for a
review!. There is some evidence that the coherence
g-band EEG activity could be as a basis for associative le
ing @7#.

*Author to whom correspondence and requests for mate
should be addressed. Tel. 086-021-64853625; 086-010-64888
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How to represent an essential feature of a perceptual
ject, and how to bind these features as an integrated who
the cerebral cortex, still remain unresolved. In this paper
attempt to explore the representation mechanism of the t
moving-bar features, and to understand how the orienta
of the stimulus and other features are bound into more c
plex features.

MODEL

Our model is shown in Fig. 1. In Fig. 1~a!, the upper is an
input pattern, a state with two moving bars; the middle is
input layer of the network, and the bottom the cortical arr
The input layer consists of two 10310 square arrays o
input-layered units; the cortical array is a 30330 square ar-
ray of cortical units. For the convenience of description,
number all 900 units by their locations~row, column!, 30
3row1column. Figure 1~b! plots the response of input
layered units expressed by sombrero function.

A moving light bar is usually used as a visual stimulus
neurophysiological experiments for monkeys or cats aw
or under anesthesia. In our simulations, two moving bar
accepted as the stimulus. They are of the samea orientation,
and move appositely at the same constant velocityv0 @Fig.
1~c!#. In all computer simulations, only the orientationa for
all parameters of the stimulus is considered. For the sak
discrete computation, it is digitized as a sequence of mov
states of two moving bars. Each state is represented by
310 array of blocks@also see Fig. 1~a!#. White blocks indi-
cate the background, and all black blocks represent the
bars@see Fig. 1~c!#. In our simulations, each input pattern
applied to two square arrays of input layer at the same t
~in Fig. 1!. Each input-layered unit transforms the sum
inputs it receives, weighted by the sombrero function, in
spikes and conveys them to the cortical array. The ma
ematics details for the transformation algorithm is given
Appendix A.

Our model is a modified copy of Shrageret al.’s version.
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Shrageret al. used a cortical array model based on the KD
model to investigate the emergence of a functional organ
tion. According to the KDC model@8#, the dendritic selec-
tion and elimination depend upon the activity-dependent
fusion of a neurotrophic substance~also see Ref.@9#!.
Shrageret al. @10# extended the KDC model by introducing
‘‘wave’’ of plasticity, which can lead to a differential distri
bution of the function over the cortical surface, and revea
that this manipulation could induce the development
higher order functionality in subsequently developing ar
of the simulated cortex.

In comparison with the version of Ref.@10#, the most
important modifications we made include the following:~1!
Cortical units in the network are modeled by coinciden
detector neurons.~2! The time delay to transmit a spik
along a connection is considered, as well as the time dela
fire a spike by a neuron when its membrane potential is o
its threshold.~3! The input layer consists of two square a
rays of input-layered units, instead of input of two one-bit
afferent units@10#. ~4! The cortical development algorithm
~see Ref.@10#! is extended in accordance with the modific
tions of neuron model, time delay, and the firing property
input-layered units.~5! The associative learning rule is use
in the training stage of the network, whereas in the sub
quent testing stage for the matured network, the spike-ba
Hebbian learning rule@11# is employed.

All above modifications are based on the previous stud

FIG. 1. Organization of the neural network model and the in
pattern.~a! Diagram of the two-layered network, consisting of tw
square arrays of input-layered units and a square array of cor
units.~b! The response of the input-layered unit to the input patte
~c! The stimulus:a-oriented moving bars~the arrow indicates the
moving direction of the bar!.
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and considerations. According to Softky@12#, a cortical neu-
ron functions as a coincidence detector at least in an effec
sense. A coincidence detector neuron operates as a det
for the temporal coincidence of enough synaptic inputs
trigger the firing of the neuron@12,13#. Hopfield described an
encoding and computation model using action potential t
ing to carry and encode information, and using a time-de
network to compute this representation. He suggested
the dynamic range and accuracy of the pattern recogni
depend on the time resolution available@14#. Recently,
studying distributed synaptic modification in neural networ
induced by local stimulation with temporal patterns, Bi a
Poo found that repetitive local stimulation can result in sy
aptic modifications at sites remote from the stimulated n
ron @15#. Other documents indicated that time delay may
one of the origins of synchronized activity in the system~see
Ref. @6# for a review!. Time delay~or latency! is a potential
code for feature binding in the striate cortex@16#. According
to neurophysical experiments, Watanabe and Aihare ga
mathematical expression that reflects the relationship
tween the strength of the superthreshold stimulation and
latency of action potentials@17#. These studies illustrated
that time delay plays an important role in the neural codi
the neural representation, and the modification of synaps

At the beginning of any simulation, as well as in the inp
layer, each unit in the cortical layer is randomly assigned
be excitatory or inhibitory. The probability of the excitator
cortical unitPcell and the probability of the excitatory input
layered unitPafferentare initially given. Whether the synapti
connections of a projective unit are excitatory or inhibitor
it is in accord with type of the unit. The inhibitory connec
tivity is local, while the excitatory connectivity is global. Th
projecting probability for an inhibitory presynaptic cortic
unit j to post-synaptic uniti decays in an exponential wa
with distance,r 5r ( i , j ), Plink i( i , j )5Ai exp(2r2/2ps i); for
the excitatory presynaptic cortical unitj, the projecting prob-
ability is Plink e( i , j )5Ae . The synaptic connections from th
input-layered unit to the cortical array are determined by
projecting probabilityPlink ic , but there is no synaptic con
nection feedback to the input-layered units. To focus on
dynamics of the cortical array, the weightWkl of the connec-
tion from input-layered unitk to the cortical neuronl is
assigned toÃ ~Ã50.8 for all Wkl!. There is no synaptic
connection from an input-layered unit to another inp
layered unit or to itself, nor a synaptic connection from o
cortical unit to itself in this model. Transmission spike del
along a synaptic connection is determined by the equa
Tdelay5Bk1Ck R( ), (k5cc,ic), where R(•) is a random
function ranging from 0.0 to 1.0.Bk andCk , are constants
cc indicates the synaptic connection of one cortical u
to another cortical unit, andic from that of an input-layered
unit to a cortical unit. Once the distribution of intercortic
connections is assigned, the initial thresholdQv of cortical
unit v and the initial weightWuv of the intercortical connec-
tion ~cortical unit u to unit v! are thus determined~see
Appendix A!.

With the initialized network, the training operation of th
network and the testing are carried out in turn. For the tra
ing operation, a brief summary of the mathematical deta

t
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TABLE I. The values of most important simulation parameters of the model.x i j is the concentration of
trophic factor~initially x i j 50 for all connections!, and the other parameters in the developing process are
same as in Ref.@10#.

Variable Parameter Value

Pcell the ratio of cortical excitatory units to the
inhibitory synapse connection

0.5–0.8

Pafferent the ratio of input-layered excitatory units to the
inhibitory synapse connections

0.3–0.8

Ai , s i the coefficients for initially assigning the cortical
inhibitory synapse connections

0.6,5

Ae the coefficients for initially assigning the cortical
excitatory synapse connections

0.1–0.45

Plink ic the probability for initially assigning the synapse
connections from input-layered units to a cortical

array

0.25

Bcc, Ccc intercortical transmission delay constant 1 cycle~ms!, 20 cycles~ms!
Bic, Cic input-layered units to the cortical units transmission

delay constant
8 cycles~ms!, 4 cycles~ms!

T0, T1 threshold constant of cortical units 7.0, 0.25
Ti threshold of cortical uniti Ti5T01T1SWi j

a0, b0 cortical synapse weight constant 1, 0.4
Wi j synaptic strength Wi j 5a01b0* x i j

Tsleep absolute refractory period 5–7 cycles~ms!
h learning parameter 1.0e25
tsyn time constant 5 cycles~ms!
t1 time constant 1 cycle~ms!
t2 time constant 20 cycles~ms!
A1 dimensionless constant 1.0
A2 dimensionless constant 21.0
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for the development algorithm is given in Appendix A, and
subset of the most important model’s parameters are sh
in Table I. These parameters were assigned to single u
synapses, or channels. More details of the cortical deve
ment algorithm can be found in Refs.@10# and @8#. As a
result of the training operation, one striking aspect of
development of the cortical array in the network is stimulu
directed pruning of the initial overproduction of synap
connections, resulting in a relatively sparsely interconnec
final functional architecture. In addition, the parameters
the matured network, such as thresholdQv of neuronv, the
weight Wu,v of connection~from u to v!, the transmission
delay TDu,v of the connection~synaptic pathway!, and the
spatial distribution of the remaining intercortical conne
tions, are closely correlated to the given training stimulus
subsequent testing process, instead of Hebb’s associ
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rule used in the training process, a spike-based Hebb
learning rule depending critically on an asymmetric ‘‘lear
ing window’’ @11# was adopted. The change of the synap
weightDWi j depends only on firing timest i8 ~the arrival time
of the f th input spike at neuroni! and tn ~the nth output
spike of the neuron! in the time interval@t, t1DT#,

DWi j 5hF(
t i
f

8win1(
tn

8wout1 (
t i
f ,tn

8W~ t i
f2tn!G ,

where the learning parameterswin and win are related toh,
win5h andwin521.0475h. The learning windowW(s) in
units of the learning parameterh is a function of the delay
s5t i

f2tn,
W~s!5hH expS S

tsynD FA1S 12
S

t̃1
D1A2S 12

S

t̃2
D G for S<0

A1 expS 2
S

t1
D1A2 expS 2

S

t2
D for S.0,
6-3
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FIG. 2. The spike trains of 12 out of 900 co
tical units on the testing stimulus, a 30°-oriente
moving bars, for the network trained by the train
ing stimulus, a 30°-oriented moving bar, with th
stimulus parametersv051 and stimulation con-
ditions listed in Table I.
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where tsyn, t1 , t2 , t̃15tsynt1 /(tsyn1t1) and t̃2

5tsynt2 /(tsyn1t2) are time constants. In the testing oper
tion the modification of the transmission spike delays
synaptic connections and the changes of thresholds for
tical units, as well as a pruning of the synaptic connectio
were considered less than in training process.

SIMULATION RESULTS

As described above, all simulations we made include t
steps: a training network and a subsequent testing opera
The stimulus used in a specific stage is thus called the tr
ing stimulus or testing stimulus. For the convenience of
scription, we letb denote the orientation of the trainin
stimulus for the training stage, anda the orientation of the
testing stimulus for the testing stage. In order to investig
the neural representation ofa-orientated two moving bars
three classes of simulations are designed in this study.
now describe them in detail.

In the first class of simulations, the same stimulus ser
to train the network and then to test it. An example describ
here is the case of the chief stimulus parametersv051
~blocks per training phase!, a5b530°. Typical results of
the training operation include the fact that the synaptic c
nection density become relatively sparse. Synaptic conn
tions within the cortical array are reduced by 71.8%. Bef
the training operation, a cortical unit receives an average
47.6 connections from other cortical units, but there are o
13.4 connections remaining on average after the training
cessing. In addition, the transmission spike delay and we
for every intercortical connection are modified, and t
threshold for every cortical unit is adjusted. Figure 2 plo
the 12 spike trains of 12 cortical units firings with 12 repe
tive inputs of the same stimulus in the testing stage. Bef
analyzing the temporal structure of spiking timings of sing
units, we simply define the spiking pattern of a single unit
repetition pattern in its spike train. In Fig. 2, it can clearly
seen that in every spike train, all but the first several spi
in each activated unit precisely respond to the given inpu
a specific spiking pattern. The time interval between alt
nate repetition patterns in the spike train depends on
interval of the input stimulus,Tint . It is very interesting that
in the auditory cortex of mammals, the spiking patterns
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single cell responses to specific calls are reproduced f
trial to trial with millisecond precision@18,19#.

In the second class of simulations, one network is fi
trained on the condition of two moving bars that areb ori-
ented. Then a variety ofa1 ,a2 ,...,ak-orientated two-
moving-bar testing stimuli are separately applied to the m
tured network for testing. The simulation examples repor
here are carried out with the chief stimulus parametersb
530° for training, anda1530°, a2545°, a350°, and
a4590° for testing. For the convenience of descriptio
these testing simulations are separately defined as Exa
A (a1530°), Example B (a2545°), Example C (a3
50°) and Example D (a4590°). With the given four simu-
lation experiments, 80 out of 900 cortical unit
324th– 403th, marked as 0–79, are selected for analyzing
responses of cortical units. In Figs. 3~a!, 3~b!, 3~c!, and 3~d!,
most of the spike trains indicate that although the giv
stimulus is different, most of single units fire in specific spi
ing patterns, and the time interval between alternate rep
tion pattern in every spike train is associated with the int
val of the repetitive input. Even so, for these units, t
spiking patterns of the same unit in different experiments
not the same. In the simulation experiment, Example A,
illustrated above, when the testing stimulus is the same as
training stimulus (a5b), all activated units precisely re
peatedly respond to the given input in the manner of spec
spiking patterns. However, when the testing stimulus is d
ferent from the training stimulus (aÞb) with regard to the
firing pattern and its temporal structure, some changes
pears. For instance, in Example B, the testing stimulus
rameter isb530°, and the training stimulus parametera
545°. As displayed in Fig. 4, for every spike train, durin
the first few repetition inputs, the spiking patterns of som
single units change from one temporal structure to ano
~e.g., units 141 and 234 in Fig. 4!. Some units begin to stop
firing ~i.e., unit 402! or begin to fire~i.e., unit 660!. Their
firings transit from a temporal structure~or spike pattern! to
another structure. This result reveals that if the orientation
the testing stimulus is different from that of the trainin
stimulus stored in the network, the nonlinear dynamic e
lution of the system will appear. It will finish in a short tim
and run in a stable state. The nonlinear dynamic evolut
process of the system further illustrates the dynamic beh
ior robustness of the network
6-4
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FIG. 3. The spike trains of 80
out of 900 cortical units~located
at 0–79 in the cortical array! on
the specific stimulus,a-oriented
moving bars~a50°, a530°, a
545°, anda590°, respectively!,
with the other simulation param
eters and simulation conditions a
in Fig. 2.
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model. When firing single units from one spiking pattern
another spiking pattern, the temporal structure of their co
binatorial spiking patterns change to a new temporal str
ture. Thus, in the sense of neural representation of
a-orientated two moving bar, information may be encoded
combinatorial spiking patterns more than in the firing p
terns of single units.

For a given simulation experiment, in the light of the fin
temporal structure of the spiking patterns, all cortical un
firings could be categorized. For two unitsu and v, if the
temporal structures of their spiking patterns are the sa
their firings could be categorized as the samea class. Other-
wise, their firings are categorized in two different class
Statistical data show that for the four simulation expe
ments, the counts for the classes of spiking patterns ar
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for Example A (a2530°), 77 for Example B (a3545°), 23
for Example C (a150°), and 28 for Example D (a4
590°), respectively. It seems that in a neural representa
of a-oriented two moving bars, if only comparing the coun
for the classes of spiking patterns to represent the stimu
two moving bars that are oriented 30° or 45°, is more th
the cases of 0°- or 90°-orientated two moving bars. On
other hand, we note that although the orientations of
testing stimuli are different, the same spiking patterns alw
exist among the four different simulation experiments. T
phenomena also appear in the case of nonlinear dyna
evolution of single units discharges. When the system is r
ning in a stable state, the spiking patterns of single un
firings ~not generated by the same unit! can be also found in
the neural representations of the other stimuli. The re
f
trained
TABLE II. The maximum crosscorrelation coefficientrmax between two frequencies of firing frames o
the cortical array on the same testing stimulus, a 30°-oriented bars, for the two different networks
separately by two moving bars oriented byb1 andb2 ~Ave. indicates average and Vari. variance!

b1 ,b2 0°,30° 0°,60° 0°,120° 30°,60° 30°,120° 60°,120° Ave. Vari.

rmax 0.03 0.08 0.08 0.07 0.02 0.07 0.06 2.831023
6-5
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FIG. 4. The spike trains of 14 units on th
testing stimulus, a 45°-oriented moving bars, f
the network trained by the training stimulus,
30°-oriented moving bars, with the same stimul
parameters and simulation conditions as in Fig.
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illuminates that the responses of cortical units are selectiv
involved in representation of stimulus in manner of spiki
patterns. Thus, the exacting timing of individual spikes
correlated to a specific stimulus, and the combination
spiking patterns of individual units is context-dependent.

Carefully analyzing the firings of the individual units, w
find that the activity of the activated units within the cortic
array includes both irrhythmical spiking and rhythmical sp
ing. An oscillatory analysis of the units firings by identific
tion of power spectrum peaks indicates that with a giv
stimulus, a two moving bar oriented by 30°, oscillatory fi
ings of single units exist in the frequency range 13–72 H
The same data can be obtained in the other simulation
periments~Examples B, C, and D!. The data of the frequenc
range for these single units seem to not be correlated to
orientation of the stimulus. These data are in agreement
the previous experimental data@20–23#. We also note that
some units are still suppressed, i.e., units 504 and 562~in
Fig. 2!.

In order to describe the collective responses of the cort
array and further examine the response properties of uni
this representation, we turn to an analysis of the response
the whole cortical array. During a simulation operation, t
instantaneous firing states of all units within a cortical ar
at a timet i form a binary image if the active state of a unit
denoted by the pixel value 1, and an inactive state by 0. H
every binary image could be called a firing frame for descr
ing the instantaneous firing states of the cortical array.
cause one firing frame is formed at each running step
sequence of firing frames is yielded during the testing p
cess. According to our definition of autocorrelation for t
activity of the cortical array~see Appendix B!, we examine
the power spectrum of combinatorial spiking patterns of
cortical array in Example A. The data demonstrate that
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synchronization of the oscillating activity of the cortical a
ray occurs in frequencies 1462 and 4463 Hz. The first
peak in the power spectrum is in thea-frequency band, and
the other is in theg-frequency band. Some papers sugges
that the coherence of the fast rhythms emerges within a s
range, whereas low-frequency sleep rhythms exhibit s
chronization on a larger spatial scale@24–26#. If it is true
that the cortical array developing process can cause a di
ential distribution of functions over the cortical array su
gested in Ref.@10#, the low-frequency peak (1462 Hz) may
reveal a synchronization of cells among two or more se
rated function structures. Therefore, for the experiment~Ex-
ample A!, there is more than one synchronous episode
groups of units in neural representation of two moving b
oriented 30°. Similar calculations for the other three expe
ments were carried out, and the same conclusion achiev

For the third class of simulations, a variety ofb-oriented
bars,b150°, b2530°, b3545°, b4590°, are separately
used for training four different networks. Then the sam
stimulus, a 30°-oriented bar, is applied to these mature
works for the testing operation. In order to evaluate colle
tive response properties of the cortical array, we introduc
cross-correlation analysis for the responses of the cort
array ~see Appendix B!. Table II lists the maximum cross
correlation coefficients between the two sequences of fir
frames of the cortical array in the condition of the sam
testing stimulus (a530°) for two different networks trained
separately by two different training stimuli,b1- and
b2-oriented bars. In comparison with this result, Table
lists the maximum cross-correlation coefficients between
two sequences of firing frames of the cortical array un
conditions of two different testing stimuli,a1- and
a2-oriented bars, for the same network trained by a 3
oriented bar. It can be seen that the coefficients in Table
al
y

i.
TABLE III. The maximum crosscorrelation coefficientrmax between the two frequencies of the cortic
array on the two different stimuli, two moving bars oriented bya1 anda2 , for the same network trained b
training stimulus, a 30°-oriented bar (b530°).

a1 ,a2 0°,30° 0°,45° 0°,90° 30°,30° 30°,45° 30°,90° 45°,90° Ave. Var

rmax 0.16 0.24 0.29 1.00 0.24 0.21 0.19 0.63 1.21
6-6
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FIG. 5. ~a! The scheme of a temporal cell as
sembly and its two temporal cell subassemblie
Each short line indicates a spike. w1 and w2 d
note respective activity bins of temporal cell su
assemblies~c1–c4 and c5–c7!. ~b! Demonstra-
tion of the episode of synchrony and desynchro
among temporal cell subassemblies~g1–g3!.
b1–b3 denote relative precise and timing ove
lapping windows between temporal cell suba
semblies, in which synchronization of the comp
nents among temporal cell subassemblies res
in the emergence of dynamic cell assemblies.
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are much higher than the values in Table II. This result
veals that the responses of the two different networks trai
by different stimuli in neural representations of the sa
stimulus are obviously different. This is accordance with
conclusion that the network pathway remodeling inducing
repetitive local stimulation appears to be highly depend
on a precise temporal pattern of the stimulation@15#. The
combination of spiking patterns of all cortical units with
the cortical array depends not only on the stimulus itself
also on the final functional architecture of the mature n
work. These combinatorial spiking patterns may play a m
important role in the neural representation of ana-oriented
bar than spiking timings for single cortical units. Abeles a
co-workers reported that they detected repetition pattern
spike trains taken from multiple cell recordings@27–30#.
They suggested that the spatiotemporal firing patterns rel
to behavior and information may be encoded in spatiote
poral firing patterns@28,29#.

It is interesting in Table II that there are pairs with th
same values: 0.07 for 30°-60° and 90°-120° and 0.08
0°-60° and 0°-120°. We find that for every pair of trainin
stimuli with the same value, the differences in orientations
the two stimuli for its two items are the same. For examp
the pairs 30°-60° and 90°-120° have the same coeffic
0.07, the differences between the two items are both 30°.
reason for this is that the response function of the inp
layered units is the sombrero function with a circular
ceived field.
04191
-
d

e
e
y
t

t
t-
e

in

ed
-

r

f
,
nt
he
t-
-

DISCUSSION AND CONCLUSION

A possible spatiotemporal coding mechanism

Observing spiking patterns of some cortical units sho
that there are cortical units responding to stimuli from t
same fine temporal structure~e.g., units 502 and 542 in Fig
2!. These units could be thus defined as temporal cell ass
blies. The response properties of the ensemble of units
similar to that of a functional column in the visual cortex, b
these units could be spatially separated. Furthermore, if
phase relationship of spiking timings for every cortical u
in a temporal cell assembly is considered, a temporal
assembly can be split into several temporal cell subass
blies, in which the activity of all components can form
closely firing chain@e.g., a subassembly in Fig. 5~a!#. In
other words a temporal cell subassembly holds a time bin
activity, termed as the activity bin~i.e., w1!, in which all
components fire in turn. Motivated by the characteristics o
functional column and a functional microcolumn, we pos
late that a temporal cell subassembly acts as a detecto
local features.

The results of recent studies of the visual system indica
that responses to synchronously presented pattern elem
can be bound together and interpreted as a part of the s
object, whereas responses to pattern elements presented
temporal offsets more greater than 10 ms are perceived t
unrelated@31–33#. One can interpret synchrony as a sign
ture of relatedness. Abeles and co-workers studied whe
6-7
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repetition patterns in spike trains taken from multiple c
recordings are associated with an external event. They
gested that synfire reverberations offer some advantages
regard to the possibility of processes in different brain lo
tions. The selective connections between cell assemblies
marked by temporal coherence on a millisecond time sc
@4,34,35#. Together with the function of synchronization an
our simulation results, we attempt to demonstrate a poss
neural coding mechanism concerned with temporal cell s
assemblies. Three temporal cell subassemblies@g1–g3, in
Fig. 5~b!# are taken into account for the sake of simple int
pretation. Within a large temporal windowTs @shown in Fig.
5~b!#, if the overlap occurs among their activity bins~b1, b2,
and b3, respectively!, these temporal cell subassemblies~i.e.,
g1 and g2, g1 and g3! will fire synchronously within their
overlap activity bin. Because the emergence of temporal
assemblies results from an input event of coincidence de
tion by the mature network, these cell subassemblies
establish a temporal correlative relationship underlying th
characteristic spiking patterns. In these subassemblies
cells firing within the overlap activity bin are functionall
linked, temporally and they organized spontaneously int
dynamical cell assembly. Because of synchronization,
feature information contained in these temporal cell sub
semblies is temporally bound together and conveyed to s
sequent processing systems in a precise timing and co
tent manner. The activity of the dynamical cell assemb
specific spatiotemporal firing patterns, carries more comp
features. Thus the participation of all components in a te
poral cell subassembly temporally contributes collectively
a particular coding function. This possible coding mech
nism is in agreement with an electrophysiological expe
ment. The detailed structure of the columnar organizat
was investigated by using optical imaging of the intrins
signal. The result suggests that there exists a groupin
columns representing related features, and that they clu
with partial overlaps to compose a large unit of image p
cessing@36#. It was reported more recently that precise
reproducing temporal firing patterns in thalamocortical
sponses produces information about stimulus featu
@37,38#. Clearly, the selective feature’s binding mechani
depends on temporal aspects—the overlap among a
bins, and the large temporal window nesting these small b
as well. Evidently, selective connections between cell ass
blies are marked by temporal coherence on a millisec
time scale@4,39,40#. The coding strategy also indicates th
if only a single feature is present or if overlap among t
activity bins never occurs, then the binding problem does
arise. In fact, some project neuron pairs in insect olfact
system, whose components are both activated by the s
odor, may never even fire spikes together synchronou
@41#.

Abeles and co-workers found that spatiotemporal fir
patterns in the frontal areas of monkeys are associated
behavior. They suggested that information may be enco
in the spatiotemporal firing patterns as in the ‘‘synfir
model@28,29,42#. Watanabe, Aihara, and Kondo’s simulatio
experiments obtained the same conclusion on a spatiotem
ral firing pattern@43#. However, the difference between co
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cerns whether the spiking patterns in the networks are s
chronous or not. The synfire model assumes that firings
neurons in the same node are synchronized, while the la
assumes that dynamical cell assemblies could be organ
in a network by a coincidence of incident pulses and a te
poral correlation of firings resulting from events of such c
incidence detection@3#. Our model is in agreement with tha
of Ref. @43#. We emphasize that the organization of dynam
cal cell assemblies results from a synchronization of firin
among temporal cell subassemblies. We suggest that
emergence of temporal cell subassemblies is stimulus dri
and results from events of coincidence detection by the
ture network. In our suggested coding mechanism, the o
lap activity bin among temporal cell subassemblies provi
a temporal window for synchronization of these subasse
blies. Within the overlap activity bin, the neurons belongi
to these temporal cell subassemblies are temporally lin
and organized spontaneously into a dynamical cell assem
A selective feature binding mechanism relies on the rela
spiking timing among temporal cell assemblies and prec
temporal windows. Synchronization among temporal c
subassemblies could be used for response selection an
organize a more complex cell assembly, because it enha
the saliency of discharges with great temporal selectivity
accordance with the previous conclusion@44#. Thus, infor-
mation may be encoded in the precise temporal relati
among members of a dynamical cell assembly, and be
coded by spatiotemporal firing patterns.

In this research, three aspects of simulation experime
are carried out. The results demonstrate that response
cortical units are selectively involved in a neural represen
tion of stimulus in the manner of spiking patterns. The co
bination of spiking patterns of all cortical units depends n
only on the stimulus itself but also on the final function
architecture of the network. It has been suggested tha
spike timing encodes neural information, a delay line arc
tecture combined with a spike timing-based synaptic mod
cation rules provides a network mechanism, to convert
store temporal information into spatially distributed patter
of permanent synaptic modifications@15#.
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APPENDIX A: A CORTICAL DEVELOPMENT
ALGORITHM

This appendix is adapted in part from Refs.@8# and @10#.
At the beginning of the training procedure, each cortical u
has a firing thresholdTi and a pool of ‘‘trophic factor’’
(FT),m i ~m i520.0 for all units!,

Ti~ t !5T01T1 (
Wi j .0

Wi j , ~A1!

whereT057.0, andT150.2. The synaptic weightWi j is
related to the amount ofFT that accumulated in the connec
tion, expressed as
6-8
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Wi j ~ t !5c01c1s i j , ~A2!

wherec051.0 andc154.0.s i j is the concentration ofFT in
the connection from uniti to unit j. Each connection betwee
units take on one of three discrete states: labile, stable
dead. Initially, all connections begin in the labile state, a
s i j 50. A synaptic connection is essentially guaranteed
stabilize when itss i j reaches 1.0. Similarly, the probabilit
of a connection entering the dead state is proportional to
time t, whose simulation runs

Pstabilize51/$11exp@215~s i j 21!#%, ~A3!

Pdie51/$11exp@20.02~ t2500!#%. ~A4!

In a simulation, the response function of a cortical unit
modeled by the response function of a cortical cell by
rectangular response function in an effective sense@45#. At
each running cycle, within a quasisynchronous windowÃ
(Ã51.5 cycles!, each cortical unit sums the activation com
ing to it along excitatory connections and subtracts from
hibitory connections, both weighted by synaptic efficienc
Wi j . If the summation of the activationU is over than its
firing thresholdTi , and if no action potentials has been ge
erated more recently the refractory periodTsleep(Tsleep
54 – 7 ms), it will emit a spike precisely behind the tim
delayDt. The time delay is described by the functiong(U)
5u/@w1(U2Ti)#, ~u53 – 6 ms andw51.0!, which models
a relationship between the strength of the superthres
stimulation and the latency of the action potentials@17#. The
transmission spike delay of each connection~synapse path-
way! is modified by the covariance rule of the activity
presynaptic and post-synaptic neurons, according to
equation

DTd52r~VB2^VB&!~VA2^VA&!,r51.031025.

At each training phase~every five cycles!, the network is
trained by updatedm i , s i j , and Ti connection states. A
quantity ofFT is moved from a unit pool ofFT(m i) to a link
pool of FT(s i j ) according to a Hebbian associative rule.~1!
For excitatory post-synaptic units,dHebb51 whenever the
pre-synaptic post-synaptic neurons fire simultaneously,
dHebb50 otherwise.~2! For inhibitory terminals,dHebb51
whenever the post-synaptic neuron fires but the presyna
~inhibitory! neuron does not fire; otherwise,dHebb50. The
concentration ofFT in an incoming connections i j changes
according to the following equations:

Dm i520.01dHebbm i , ~A5!

Ds i j 52lc~1!Dm i . ~A6!
E
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Here the scaling factorlc(t) reflects a dynamic Gaussia
spatial modulation of the diffusion across the cortical arr
During the first training phase, the following value oflc will
be utilized:

lc5$1.0,0.86,0.77,0.66,0.53, . . . ,0.0%.

On the next training phase, the ‘‘wave’’ of plasticity move
to the right a small amount.

lc5$0.86,1.0,0.86,0.77,0.66,0.53, . . . ,0.0%.

The ‘‘wave’’ moves the same small amount for each traini
phase, with the end of the development manipulation. T
firing thresholdTi of a cortical unit, or synaptic weightWi j ,
and a connection state are updated according to the
~A1!–~A4!.

Meanwhile, at each training phase, two square arrays
input layer simultaneously transform a stimulus pattern i
bundles of spike trains with the specific spatiotemporal str
ture. The responses of an input-layered unit is determined
a pixel and its eight neighbors within input pattern.

y~ i , j !5a0x~ i , j !1a1@x~ i 21,j 21!1x~ i 11,j 21!

1x~ i 21,j 11!1x~ i 11,j 11!#

1a2@x~ i , j 21!1x~1,j 11!1x~ i 21,j !

1x~ i 11,j !#, ~A7!

wherea051.0, a150.77, anda250.66. If y( i , j ).Tf (Tf
51.0), the input-layered unit emits a spike precise beh
the timeTd56/@1.02(y( i , j )2Tf)#.

APPENDIX B

With the two sequences of the firing frames of the corti
array in neural representations of the stimulus, we define
autocorrelation coefficientra(t0) and the crosscorrelation
coefficientrc(t0) as

ra~ t0!5
1

N (
t51

N

(
x,y51

D

d@U~x,y,t1t0!2U~x,y,t !#,

rc~ t0!5
1

N (
t51

N

(
x,y51

D

d@Ua~x,y,t1t0!2Ub~x,y,t !#,

respectively, whered(•) is the delta function, andN indi-
cates the duration for computation,D its dimension, and
Ua(x,y,t) andUb(x,y,t) the activity of the neuron~x,y! re-
sponding toa andb stimuli at timet. Generally,N is set to
the time interval between two repetitive inputs of th
stimulus.
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